140 research outputs found

    Generalization of form in visual pattern classification.

    Get PDF
    Human observers were trained to criterion in classifying compound Gabor signals with sym- metry relationships, and were then tested with each of 18 blob-only versions of the learning set. General- ization to dark-only and light-only blob versions of the learning signals, as well as to dark-and-light blob versions was found to be excellent, thus implying virtually perfect generalization of the ability to classify mirror-image signals. The hypothesis that the learning signals are internally represented in terms of a 'blob code' with explicit labelling of contrast polarities was tested by predicting observed generalization behaviour in terms of various types of signal representations (pixelwise, Laplacian pyramid, curvature pyramid, ON/OFF, local maxima of Laplacian and curvature operators) and a minimum-distance rule. Most representations could explain generalization for dark-only and light-only blob patterns but not for the high-thresholded versions thereof. This led to the proposal of a structure-oriented blob-code. Whether such a code could be used in conjunction with simple classifiers or should be transformed into a propo- sitional scheme of representation operated upon by a rule-based classification process remains an open question

    Category learning induces position invariance of pattern recognition across the visual field

    Get PDF
    Human object recognition is considered to be largely invariant to translation across the visual field. However, the origin of this invariance to positional changes has remained elusive, since numerous studies found that the ability to discriminate between visual patterns develops in a largely location-specific manner, with only a limited transfer to novel visual field positions. In order to reconcile these contradicting observations, we traced the acquisition of categories of unfamiliar grey-level patterns within an interleaved learning and testing paradigm that involved either the same or different retinal locations. Our results show that position invariance is an emergent property of category learning. Pattern categories acquired over several hours at a fixed location in either the peripheral or central visual field gradually become accessible at new locations without any position-specific feedback. Furthermore, categories of novel patterns presented in the left hemifield are distinctly faster learnt and better generalized to other locations than those learnt in the right hemifield. Our results suggest that during learning initially position-specific representations of categories based on spatial pattern structure become encoded in a relational, position-invariant format. Such representational shifts may provide a generic mechanism to achieve perceptual invariance in object recognition

    Theoretical aspects of quantum electrodynamics in a finite volume with periodic boundary conditions

    Full text link
    First-principles studies of strongly-interacting hadronic systems using lattice quantum chromodynamics (QCD) have been complemented in recent years with the inclusion of quantum electrodynamics (QED). The aim is to confront experimental results with more precise theoretical determinations, e.g. for the anomalous magnetic moment of the muon and the CP-violating parameters in the decay of mesons. Quantifying the effects arising from enclosing QED in a finite volume remains a primary target of investigations. To this end, finite-volume corrections to hadron masses in the presence of QED have been carefully studied in recent years. This paper extends such studies to the self-energy of moving charged hadrons, both on and away from their mass shell. In particular, we present analytical results for leading finite-volume corrections to the self-energy of spin-0 and spin-12\frac{1}{2} particles in the presence of QED on a periodic hypercubic lattice, once the spatial zero mode of the photon is removed, a framework that is called QEDL\mathrm{QED}_{\mathrm{L}}. By altering modes beyond the zero mode, an improvement scheme is introduced to eliminate the leading finite-volume corrections to masses, with potential applications to other hadronic quantities. Our analytical results are verified by a dedicated numerical study of a lattice scalar field theory coupled to QEDL\mathrm{QED}_{\mathrm{L}}. Further, this paper offers new perspectives on the subtleties involved in applying low-energy effective field theories in the presence of QEDL\mathrm{QED}_{\mathrm{L}}, a theory that is rendered non-local with the exclusion of the spatial zero mode of the photon, clarifying recent discussions on this matter.Comment: 57 pages, 10 figures, version accepted for publication in Phys. Rev.

    Contrast- and illumination-invariant object recognition from active sensation

    Get PDF
    It has been suggested that the deleterious effect of contrast reversal on visual recognition is unique to faces, not objects. Here we show from priming, supervised category learning, and generalization that there is no such thing as general invariance of recognition of non-face objects against contrast reversal and, likewise, changes in direction of illumination. However, when recognition varies with rendering conditions, invariance may be restored, and effects of continuous learning may be reduced, by providing prior object knowledge from active sensation. Our findings suggest that the degree of contrast invariance achieved reflects functional characteristics of object representations learned in a task-dependent fashion

    Peripheral vision and pattern recognition:a review

    Get PDF
    We summarize the various strands of research on peripheral vision and relate them to theories of form perception. After a historical overview, we describe quantifications of the cortical magnification hypothesis, including an extension of Schwartz's cortical mapping function. The merits of this concept are considered across a wide range of psychophysical tasks, followed by a discussion of its limitations and the need for non-spatial scaling. We also review the eccentricity dependence of other low-level functions including reaction time, temporal resolution, and spatial summation, as well as perimetric methods. A central topic is then the recognition of characters in peripheral vision, both at low and high levels of contrast, and the impact of surrounding contours known as crowding. We demonstrate how Bouma's law, specifying the critical distance for the onset of crowding, can be stated in terms of the retinocortical mapping. The recognition of more complex stimuli, like textures, faces, and scenes, reveals a substantial impact of mid-level vision and cognitive factors. We further consider eccentricity-dependent limitations of learning, both at the level of perceptual learning and pattern category learning. Generic limitations of extrafoveal vision are observed for the latter in categorization tasks involving multiple stimulus classes. Finally, models of peripheral form vision are discussed. We report that peripheral vision is limited with regard to pattern categorization by a distinctly lower representational complexity and processing speed. Taken together, the limitations of cognitive processing in peripheral vision appear to be as significant as those imposed on low-level functions and by way of crowding

    Differential impact of disfiguring facial features on overt and covert attention

    Get PDF
    Observers can form negative impressions about faces that contain disfiguring features (e.g., scars). Previous research suggests that this might be due to the ability of disfiguring features to capture attention — as evidenced by contrasting observers’ responses to faces with or without disfiguring features. This, however, confounds the effects of salience and perceptual interpretation, i.e. whether the feature is seen as integral to the face, or separate from it. Furthermore, it remains unclear to what extent disfiguring features influence covert as well as overt attention. We addressed these issues by studying attentional effects by photographs of unfamiliar faces containing a unilateral disfigurement (a skin discoloration) or a visually similar control feature that was partly occluding the face. Disfiguring and occluding features were first matched for salience (Experiment 1). Experiments 2 and 3 assessed the effect of these features on covert attention in two cueing tasks involving discrimination of a (validly or invalidly cued) target in the presence of, respectively, a peripheral or central distractor face. In both conditions, disfigured and occluded faces did not differ significantly in their impact on response-time costs following invalid cues. In Experiment 4 we compared overt attention to these faces by analysing patterns of eye fixations during an attractiveness rating task. Critically, faces with disfiguring features attracted more fixations on the eyes and incurred a higher number of recurrent fixations compared to faces with salience-matched occluding features. Together, these results suggest a differential impact of disfiguring facial features on overt and covert attention, which is mediated both by the visual salience of such features and by their perceptual interpretation

    Completeness of ``Good'' Bethe Ansatz Solutions of a Quantum Group Invariant Heisenberg Model

    Get PDF
    The slq(2)sl_q(2)-quantum group invariant spin 1/2 XXZ-Heisenberg model with open boundary conditions is investigated by means of the Bethe ansatz. As is well known, quantum groups for qq equal to a root of unity possess a finite number of ``good'' representations with non-zero q-dimension and ``bad'' ones with vanishing q-dimension. Correspondingly, the state space of an invariant Heisenberg chain decomposes into ``good'' and ``bad'' states. A ``good'' state may be described by a path of only ``good'' representations. It is shown that the ``good'' states are given by all ``good'' Bethe ansatz solutions with roots restricted to the first periodicity strip, i.e. only positive parity strings (in the language of Takahashi) are allowed. Applying Bethe's string counting technique completeness of the ``good'' Bethe states is proven, i.e. the same number of states is found as the number of all restricted path's on the slq(2)sl_q(2)-Bratteli diagram. It is the first time that a ``completeness" proof for an anisotropic quantum invariant reduced Heisenberg model is performed.Comment: LaTeX file with LaTeX figures, 24 pages, 1 PiCTeX figur

    Developmental trajectories of part-based and configural object recognition in adolescence.

    Get PDF
    Three experiments assessed the development of children's part and configural (part-relational) processing in object recognition during adolescence. In total, 312 school children aged 7-16 years and 80 adults were tested in 3-alternative forced choice (3-AFC) tasks. They judged the correct appearance of upright and inverted presented familiar animals, artifacts, and newly learned multipart objects, which had been manipulated either in terms of individual parts or part relations. Manipulation of part relations was constrained to either metric (animals, artifacts, and multipart objects) or categorical (multipart objects only) changes. For animals and artifacts, even the youngest children were close to adult levels for the correct recognition of an individual part change. By contrast, it was not until 11-12 years of age that they achieved similar levels of performance with regard to altered metric part relations. For the newly learned multipart objects, performance was equivalent throughout the tested age range for upright presented stimuli in the case of categorical part-specific and part-relational changes. In the case of metric manipulations, the results confirmed the data pattern observed for animals and artifacts. Together, the results provide converging evidence, with studies of face recognition, for a surprisingly late consolidation of configural-metric relative to part-based object recognition

    Differential impact of posterior lesions in the left and right hemisphere on visual category learning and generalization to contrast reversal

    Get PDF
    Hemispheric differences in the learning and generalization of pattern categories were explored in two experiments involving sixteen patients with unilateral posterior, cerebral lesions in the left (LH) or right (RH) hemisphere. In each experiment participants were first trained to criterion in a supervised learning paradigm to categorize a set of patterns that either consisted of simple geometric forms (Experiment 1) or unfamiliar grey-level images (Experiment 2). They were then tested for their ability to generalize acquired categorical knowledge to contrast-reversed versions of the learning patterns. The results showed that RH lesions impeded category learning of unfamiliar grey-level images more severely than LH lesions, whereas this relationship appeared reversed for categories defined by simple geometric forms. With regard to generalization to contrast reversal, categorization performance of LH and RH patients was unaffected in the case of simple geometric forms. However, generalization to of contrast-reversed grey-level images distinctly deteriorated for patients with LH lesions relative to those with RH lesions, with the latter (but not the former) being consistently unable to identify the pattern manipulation. These findings suggest a differential use of contrast information in the representation of pattern categories in the two hemispheres. Such specialization appears in line with previous distinctions between a predominantly lefthemispheric, abstract-analytical and a righthemispheric, specific-holistic representation of object categories, and their prediction of a mandatory representation of contrast polarity in the RH. Some implications for the well-established dissociation of visual disorders for the recognition of faces and letters are discussed

    Late development of metric part-relational processing in object recognition

    Get PDF
    Four experiments with unfamiliar objects examined the remarkably late consolidation of part-relational relative to part-based object recognition (Jüttner, Wakui, Petters, Kaur, & Davidoff, 2013). Our results indicate a particularly protracted developmental trajectory for the processing of metric part relations. Schoolchildren aged 7 to 14 years and adults were tested in 3-Alternative-Forced-Choice tasks to judge the correct appearance of upright and inverted newly learned multipart objects that had been manipulated in terms of individual parts or part relations. Experiment 1 showed that even the youngest tested children were close to adult levels of performance for recognizing categorical changes of individual parts and relative part position. By contrast, Experiment 2 demonstrated that performance for detecting metric changes of relative part position was distinctly reduced in young children compared with recognizing metric changes of individual parts, and did not approach the latter until 11 to 12 years. A similar developmental dissociation was observed in Experiment 3, which contrasted the detection of metric relative-size changes and metric part changes. Experiment 4 showed that manipulations of metric size that were perceived as part (rather than part-relational) changes eliminated this dissociation. Implications for theories of object recognition and similarities to the development of face perception are discussed
    corecore